We express our gratitude to the following agencies for their generous financial support: National Institutes of Health (AI00564, AI-19749), the Jeffress Trust Fund, the Chemistry Departments of VPI and SU, and the Fulbright Foundation (research fellowship to Ramon Tubio). Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the

Americal Chemical Society, for partial support of this research.
Supplementary Material Available: Experimental and spectral data for compounds 7, 9, 17a, 20-exo, 20-endo, 24, 25c, 30-exo, 30 -endo, 34, 54, 56, 60a, 60b, 61a (12 pages). Ordering information is given on any current masthead page.

Synthesis of the Heptacyclic Indole Alkaloid (\pm)-Kopsine and Related Studies

Philip Magnus, ${ }^{*, \dagger}$ Tadashi Katoh, ${ }^{\dagger}$ Ian R. Matthews, ${ }^{\dagger}$ and John C. Huffman ${ }^{\ddagger}$
Contribution from the Department of Chemistry and the Molecular Structure Center, Indiana University, Bloomington, Indiana 47405. Received March 17, 1989

Abstract

The synthesis of the heptacyclic indole alkaloid kopsine (1) was achieved by starting with the homoannular diene 14. Alkylation of the derived anion 15 with allyl bromide gave 16, which was converted into N^{1}-[(p-methoxyphenyl)-sulfonyl]-10,22-dioxokopsane (25) as previously reported. Cleavage of the non-enolizable β-keto amide $\mathbf{2 5}$ with sodium hydroxide gave the acid 26. The (p-methoxyphenyl)sulfonyl group was reductively removed and replaced by $\mathrm{CO}_{2} \mathrm{Me}$ to give 27. Reduction of 27 to the primary alcohol 28 followed by conversion to the o-nitrophenylselenide and oxidation gave the exo-methylene derivative 31. Osmylation of $\mathbf{3 1}$ gave 32, and Moffatt-Swern oxidation provided the α-hydroxy aldehyde 33. Treatment of 33 with lithium diisopropylamide in THF at $-78^{\circ} \mathrm{C}$ gave the aldol product 34. Diborane reduction of 34 gave the diol 35 after acidic workup. Moffatt-Swern oxidation of $\mathbf{3 5}$ gave kopsine (1).

Kopsine (1) was first isolated in $1890 .{ }^{1}$ However, its complex heptacyclic structure was not determined until the early 1960 s. ${ }^{2}$ For many years, it was thought that 1 was a member of the Strychnos family of alkaloids, because of its similar biology. ${ }^{3} \mathbf{1}$ provides a structural correlation and synthetic link with another class of indole alkaloids known as the fruticosanes. In 0.01 N sodium hydroxide, 1 undergoes as α-ketol shift rearrangement to give isokopsine (2). Periodate fission of 2 gave 3, which was

reduced with $\mathrm{Zn} / \mathrm{H}_{2} \mathrm{SO}_{4}$ to give dihydroisokopsine (4). Sodium borohydride reduction of isokopsine (2) also gave dihydroisokopsine (4). Treatment of 4 with lead tetraacetate provided the keto

[^0]Scheme I

aldehyde 5 , which undergoes aldol condensation leading to fruticosine (6) and fruticosamine (7) (cf. kopsine \rightleftharpoons isokopsine). ${ }^{4}$

[^1]
Scheme II

14

16
Consequently, kopsine (1) occupies a central position in this area of indole alkaloids, since its synthesis would also constitute the total synthesis of isokopsine (2), fruticosine (6), and fruticosamine (7).

While our previous synthetic endeavors in this area have resulted in the total synthesis of (\pm)-10,22-dioxokopsane (8) and (\pm)kopsanone (9), ${ }^{5}$ extension of this work to the more difficult
(3) Mukherjee, S. R.; Maiti, A.; Dey, P. K. Nature (London) 1957, 180, 196. Dey, P. K.; Chatterjee, M.; Chatterjee, A. Indian J. Physiol. Allied Sci. 1962, l6(3), 99; Chem. Abstr. 1962, 60, 8515. Bhattacharya, A. Sci. Cult 1956, 22, 120.
(4) Battersby, A. R.; Byrne, J. C.; Gregory, H.; Popli, S. P. J. Chem. Soc. C 1967, 813. Achenbach, H.; Bieman, K. J. Am. Chem. Soc. 1965, 87, 4944. Djerassi, C.; Budzikiewicz, H.; Owellen, R. J.; Wilson, J. M.; Kump, W. G.; LeCount, D. J.; Battersby, A. R.; Schmid, H. Helv. Chim. Acta 1963, 46, 742. Bycroft, B. W.; Schumann, D.; Patel, M. B.; Schmid, H. Ibid. 1964, 47, 1147. Shumann, D.; Bycroft, B. W.; Schmid, H. Experientia 1964, 20, 202. Battersby, A. R.; Gregory, H. J. Chem. Soc. 1963, 22. Ferreira, J. M.; Gilbert, B.; Kitagawa, M.; Paes Leme, L. A.; Durham, L. J. J. Chem. Soc. C 1966, 1260. Battersby, A. R.; Byrne, J. C.; Gregory, H.; Popli, S. P. Chem. Commun. 1966, 786. Guggisberg, A.; Hesse, M.; von Philipsborn, W.; Nagarajan, K.; Schmid, H. Helv. Chim. Acta 1966, 49, 2321.
(5) Magnus, P.; Gallagher, T.; Brown, P.; Huffman, J. C. J. Am. Chem. Soc. 1984, 106, 2105. For parallel studies on kopsane alkaloids, see: Kuehne, M. E.; Seaton, P. J. J. Org. Chem. 1985, 50, 4790.

The sequence of transformations ithrough to the homoannular diene 14 is described in detail in the above reference.

25

The sequence of $\mathbf{1 4}$ through the 10,22 -dioxokopsane derivative $\mathbf{2 5}$ is described in full detail in the above reference.

Figure 1. ORTEP representation of 22 (the $\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}$-p group has been deleted for clarity).
problem of $\mathbf{1}$ and $\mathbf{6}$ was not readily apparent. The fruticosane skeletal type cannot be constructed by direct intramolecular Diels-Alder reaction of the homoannular diene 10, since the preferred (less strained) transition state produces the kopsane system 11, Scheme I. Attempts to overide the sterically preferred pathway by either substituents placed onto the allyl appendage or Lewis acid catalysis did not produce the fruticosane system 13, but produced the kopsane skeleton 11 or cyclobutane formation 12. ${ }^{6}$

Consequently, it was decided to attempt to modify our original strategy to the kopsanes to deal with the problem of compatibility with the C-3 tertiary hydroxy group in $\mathbf{1}$. This requires that the key homoannular diene $\mathbf{1 4}$ has to be alkylated with a C-2-heterofunctionalized allyl component that can eventually become the crucial C-3 hydroxy group in 1, Scheme II. The homoannular diene 14 has been made before in the course of our kopsanone synthesis, and its synthesis is briefly outlined in ref 5 .

Ideally, X in 16 should be an enol derivative or a synthetic equivalent with the restricting proviso that X in 17 will be a tertiary functional group that cannot undergo $\mathrm{S}_{\mathrm{N}} 1$ or $\mathrm{S}_{\mathrm{N}} 2$ chemistry. The choices for X are further limited by the fact that alkylation of the anion 15 is severely impeded by the steric bulk of X . For example, treatment of 14 with $\mathrm{KN}\left(\mathrm{SiMe}_{3}\right)_{2} / \mathrm{THF} / 25^{\circ} \mathrm{C}$ followed by addition of $\mathrm{ICH}_{2} \mathrm{C}(\mathrm{Br})=\mathrm{CH}_{2}$ resulted in decomposition, whereas addition of $\mathrm{ICH}_{2} \mathrm{C}(\mathrm{Cl})=\mathrm{CH}_{2}$ gave $16(\mathrm{X}=\mathrm{Cl})$ in 92% yield. This is clearly a steric effect of the β-group, albeit situated on a trigonally hybridized carbon, hindering the formation of the pseudopentacoordinate transition state. A number of alkylating agents $\left[\mathrm{X}=\mathrm{OMe}, \mathrm{OP}(\mathrm{O})(\mathrm{OMe})_{2}\right]^{7}$ were tried and were completely unsuccessful. We have recently reported the complete details of the conversion of $17(\mathrm{X}=\mathrm{Cl})$ into (\pm)-kopsijasmine (20) via the crucial β-keto amide 18 and its seco derivative $19 .{ }^{8}$

The α-chloro ketone 18 was found to be inert to Ag^{1} salts, whereas when 19 was treated with $\mathrm{AgOAc} / \mathrm{CH}_{3} \mathrm{NO}_{2} / 20^{\circ} \mathrm{C}$ four compounds were isolated; the α, β-unsaturated acid 21 (20\%), the cyclobutane adduct 22 (25%) (Figure 1 shows an ORTEP representation), and what we tentatively believe to be the rearranged

[^2]product 23 (19\%) and its derived acetate 24 (10%). The mass

spectrum of 23 indicated that decarboxylation had taken place. The absence of a methine proton in the ${ }^{1} \mathrm{H}$ NMR of 24 in the region $\delta 5.4$ shows that the product is a tertiary acetate. The structural formation $23 / 24$ best explains these facts. Decarboxylation of $\mathbf{1 9 b}$ could give 19 c , which should rapidly protonate to relieve the strain of the bridgehead double bond and hydrate to give 23/24. Unfortunately while $\mathbf{2 3}$ was crystalline, the crystals were not suitable for single-crystal X-ray crystallography. Consequently, while we could convert the α-chloro acid 19 into (\pm)-kopsijasmine (20), it was not a useful substrate for 1 . We therefore pursued a route to $\mathbf{1}$ from the 10,22 -dioxokopsane derivative $\mathbf{2 5}$. The synthesis of $\mathbf{2 5}$ has been described in detail in a previous publication, and this is briefly outlined in ref 5 .
N^{1}-[(p-Methoxyphenyl)sulfonyl]-10,22-dioxokopsane (25) was cleaved with aqueous base to give the carboxylic acid 26 (96%). Reductive removal of the $\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}$ - p group was achieved by treatment of 26 with sodium naphthalenide followed by workup with $\mathrm{ClCO}_{2} \mathrm{Me}$ to give 27 (93\%). The carboxylic acid functionality was reduced via the derived mixed anhydride from isobutyryl chloroformate and 27 by treatment with NaBH_{4} to give the alcohol 28 (87%). Conversion of the alcohol into the exo-methylene derivative 31 was best carried out with the Grieco protocol. ${ }^{9}$ Treatment of $\mathbf{2 8}$ with $\mathrm{NCSeC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-\mathrm{o} / \mathrm{PBu}_{3}$ gave the derived o-nitrophenylselenide 29, which was immediately oxidized with $\mathrm{H}_{2} \mathrm{O}_{2}$ to give 31 (73\%) via the selenoxide 30. The presence of the exo-methylene group was readily revealed from its ${ }^{1} \mathrm{H}$ NMR spectrum, $\delta 5.14(1 \mathrm{H}, \mathrm{s})$ and $5.07(1 \mathrm{H}, \mathrm{s})$.

Osmylation of 31 using the Kelly-Van Rheenen ${ }^{10}$ procedure OsO_{4} (cat) $/ N$-methylmorpholine N-oxide (stoichiometric) $/ t$ $\mathrm{BuOH} / \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ gave the diol 32 (92%). The assignment of its stereochemistry is based upon the reasonable premise that the exo face (less hindered) is the side of the double bond that is preferentially osmylated. Swern-Moffatt oxidation of the diol 32 gave the α-hydroxy aldehyde 33 (95\%): ${ }^{1} \mathrm{H}$ NMR $\delta 9.64$ (1 $\mathrm{H}, \mathrm{s})$. To confirm the assigned stereochemistry at C-3 and proceed

[^3]
Scheme III

Scheme IV

toward the synthesis of kopsine (1), we treated 33 with LDA/THF at $-78{ }^{\circ} \mathrm{C}$ to give the diol 34 (91%) as a single stereoisomer. The stereochemistry of the newly formed sec-alcohol 34 was readily ascertained from its ${ }^{1} \mathrm{H}$ NMR spectrum. In kopsane derivatives where the C-11 proton and the C-22 proton are trans (dihedral angle ca. 90°) there is no observable vicinal proton-proton coupling. Reduction of the amide carbonyl group in 34 was accomplished by treatment with a large excess of diborane in THF and hydrolytic workup with 5 N HCl in order to decompose the borane hydride complex of 35 to give the diol $35(37 \%)$. Swern-Moffatt oxidation of 35 gave (\pm)-kopsine (1) (78%). Comparison of the synthetic compound 1 with an authentic sample of (-)-kopsine, kindly supplied by Prof. Manfred Hesse (Zurich), confirmed the identity of synthetic (\pm)-kopsine (Scheme III).

The indole 2,3 -quinodimethane strategy, ${ }^{11}$ as depicted in Scheme IV, has provided a convenient route to the kopsia indole alkaloids ${ }^{12}$ and resulted in the total synthesis of 10,22 -dioxokopsane (8), kopsanone (9), kopsijasmine (20), and kopsine (1). Since
(11) Magnus, P.; Gallagher, T.; Brown, P.; Pappalardo, P. Acc. Chem. Res. 1984, 17, 35.
(12) Complete details of the single crystal X-ray structural determination of $\mathbf{2 2}$ may be obtained from Dr. John Huffman. Please ask for structure report 87192.
kopsine has been converted into isokopsine (2), fruticosine (6), and fruticosamine (7), this constitutes the synthesis of all of these alkaloids.

Experimental Section

For general experimental protocol, see ref 5. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 300 MHz for solutions in CDCl_{3}, unless otherwise stated.

1-[(\boldsymbol{p}-Methoxyphenyl) sulfonyl]-10-oxokopsinoic Acld (26). $\mathrm{NaOH} /$ $\mathrm{MeOH}\left(5 \mathrm{M}, 11 \mathrm{~mL}\right.$) was added dropwise to a stirred solution of $\mathbf{2 5}{ }^{5}$ ($330 \mathrm{mg}, 0.673 \mathrm{mmol}$) in THF (70 mL) at $25^{\circ} \mathrm{C}$. After $1 \mathrm{~h}, 10 \%$ aqueous $\mathrm{HCl}(8 \mathrm{~mL})$ was added slowly at $0^{\circ} \mathrm{C}$ and the mixture diluted with $\mathrm{EtOAc} / \mathrm{CHCl}_{3}(3: 1,200 \mathrm{~mL})$. The organic layer was washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to glve a white solid. Purification by chromatography over silica gel (8 g) eluting with $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ ($97: 3$) gave 26 ($328 \mathrm{mg}, 96 \%$), as an amorphous solid. IR $\left(\mathrm{CHCl}_{3}\right) 1730,1650$, and $1600 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\delta 8.22(2 \mathrm{H}, \mathrm{d}, J=$ 9 Hz), 7.12 ($1 \mathrm{H}, \mathrm{dd}, J=8.2$ and 1.0 Hz), $6.90-7.06(2 \mathrm{H}, \mathrm{m}), 6.74$ (1 $\mathrm{H}, \mathrm{dd}, J=8.2$ and 1.0 Hz$), 6.63(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}), 4.26-4.38(1 \mathrm{H}$, $\mathrm{m}), 4.30(1 \mathrm{H}, \mathrm{d}, J=19.2 \mathrm{~Hz}$, part of AB system for C-10), $3.85(1 \mathrm{H}$, $\mathrm{t}, J=10.2 \mathrm{~Hz}), 3.69(1 \mathrm{H}, \mathrm{s}), 3.63(3 \mathrm{H}, \mathrm{s}), 2.73-2.87(1 \mathrm{H}, \mathrm{m}), 2.37$ ($1 \mathrm{H}, \mathrm{d}, J=19.2 \mathrm{~Hz}$), 2.12-2.30 $(2 \mathrm{H}, \mathrm{m}), 2.20-2.08(9 \mathrm{H}, \mathrm{m})$. HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S} m / e 508.1668$; found $m / e 508.1667$.

1-Carbomethoxy-10-oxokopsinoic Acid (27). A solution of 0.5 M sodium naphthalenide [prepared from sodium (23 mg) and naphthalene (128 mg) in dry 1,2 -dimethoxyethane (2 mL)] was added dropwise to a stirred solution of $26(140 \mathrm{mg}, 0.276 \mathrm{mmol})$ in dry 1,2 -dimethoxyethane (25 mL) at $-30^{\circ} \mathrm{C}$ under N_{2}. After 1 h , saturated aqueous potassium carbonate solution (28 mL), benzyltriethylammonium chloride (28 mg , 0.123 mmol), and methyl chloroformate ($1.4 \mathrm{~mL}, 18 \mathrm{mmol}$) were added, and the mixture was stirred at $20^{\circ} \mathrm{C}$ for 4 h . The mixture was cooled to $0^{\circ} \mathrm{C}, 6 \mathrm{M} \mathrm{HCl}(8 \mathrm{~mL})$ added, and the solution diluted with Et $\mathrm{OAc} / \mathrm{CHCl}_{3}(3: 1,100 \mathrm{~mL})$. The organic layer was washed with water and brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent in vacuo gave a white solid, which was purified by chromatography over silica gel (6 g), eluting with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(9: 1)$ to give 27 ($102 \mathrm{mg}, 93 \%$) as an amorphous solid. IR $\left(\mathrm{CHCl}_{3}\right) 3400,1735$, and $1680 \mathrm{~cm}^{-1}$. MS calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right) \mathrm{m} / \mathrm{e} 378.1579$; found $m / e ~ 378.1586$. This material was taken into the next stage without further characterization.

1-Carbomethoxy-3-decarbomethoxy-10-oxokopsininecarbinol (28). Triethylamine (0.07 mL 0.502 mmol) was added to a stirred solution of $27(100 \mathrm{mg} 0.253 \mathrm{mmol})$ in dry THF (20 mL) at $0^{\circ} \mathrm{C}$. After 20 min , isobutyl chloroformate (0.069 mL 0.532 mmol) was added dropwise at $0^{\circ} \mathrm{C}$ and the resulting mixture stirred at $0^{\circ} \mathrm{C}$ for 1 h . To the above mixture was added 2% aqueous sodium borohydride solution ($5 \mathrm{~mL}, 2.64$ mmol) at $0^{\circ} \mathrm{C}$. After 1 h at $20^{\circ} \mathrm{C}$, the mixture was diluted with $\mathrm{EtOAc} / \mathrm{CHCl}_{3}(3: 1,100 \mathrm{~mL})$, and the resulting solution was washed with aqueous potassium hydrogen sulfate solution, water, and brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation in vacuo of the solvent gave a white residue, which was purified by chromatography over silica gel (5 g), eluting with $\mathrm{CHCl}_{2} / \mathrm{MeOH}$ ($98: 2$) to give $\mathbf{2 8}$ ($84 \mathrm{mg}, 87 \%$) as an amorphous solid. Recrystallization from $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave 28. Mp 210.5-212 ${ }^{\circ} \mathrm{C}$. IR $\left(\mathrm{CHCl}_{3}\right) 3400$ and $1675 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\delta 7.55-7.69(1 \mathrm{H}, \mathrm{m})$, $7.22(1 \mathrm{H}, \mathrm{dt}, J=8.2$ and 1.0 Hz$), 7.13(1 \mathrm{H}, \mathrm{dd}, J=8.2$ and 1.0 Hz$)$, $7.05(1 \mathrm{H}, \mathrm{dt}, J=8.2$ and 1.0 Hz$) 4.27(1 \mathrm{H}, \mathrm{dd}, J=12.5$ and 3 Hz), $4.15(1 \mathrm{H}, \mathrm{dd}, J=11.5$ and 2.5 Hz$), 3.91(3 \mathrm{H}, \mathrm{s}), 3.64(1 \mathrm{H}, \mathrm{s}), 3.63$ ($2 \mathrm{H}, \mathrm{br} \mathrm{s}$), 2.82-2.96 ($1 \mathrm{H}, \mathrm{m}$), $2.72(1 \mathrm{H}, \mathrm{d}, J=19.2 \mathrm{~Hz}$), $2.63-2.82$ $(1 \mathrm{H}, \mathrm{m}), 2.10(1 \mathrm{H}, \mathrm{d}, J=19.2 \mathrm{~Hz}), 1.23-1.94(10 \mathrm{H}, \mathrm{m})$. MS calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~m} / e 382.1892$; found m / e 382.1893. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 69.00 ; \mathrm{H}, 6.85 ; \mathrm{N}, 7.32$. Found: C, $68.58 ; \mathrm{H}, 6.80 ; \mathrm{N}$, 7.20 .
exo-Methylene Adduct 31. Tri-n-butylphosphine (0.329 mL 1.34 $\mathrm{mmol})$ was added to a stirred solution of $28(63 \mathrm{mg}, 0.165 \mathrm{mmol})$ and o-nitrophenyl selenocyanate ($229 \mathrm{mg}, 1.32 \mathrm{mmol}$) in dry THF (6 mL) at $20^{\circ} \mathrm{C}$. After $2 \mathrm{~h}, 50 \% \mathrm{H}_{2} \mathrm{O}_{2}(0.168 \mathrm{~mL}, 2.47 \mathrm{mmol})$ was added and the resulting solution stirred at $20^{\circ} \mathrm{C}$ for 1 h . The mixture was quenched with water (20 mL), extracted with EtOAc (20 mL), washed with aqueous sodium hydrogen carbonate solution, aqueous potassium hydrogen sulfate solution, and brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent in vacuo gave a pale-yellow solid, which was purified by chromatography over silica gel (5 g), eluting with hexane/EtOAc (4:1) to give 31 ($44 \mathrm{mg}, 73 \%$). IR (CHCl_{3}) 1710 and $1675 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\delta 7.76(1 \mathrm{H}, \mathrm{dd}, J=8.2$ and 1.0 Hz$), 7.23(1 \mathrm{H}, \mathrm{dt}, J=8.2$ and 1.0 Hz$)$, $7.19(1 \mathrm{H}, \mathrm{dd}, J=8.2$ and 1.0 Hz$), 7.06(1 \mathrm{H}, \mathrm{dt}, J=8.2$ and 1.0 Hz$)$, $5.14(1 \mathrm{H}, \mathrm{s}), 5.07(1 \mathrm{H}, \mathrm{s}), 4.16-4.29(2 \mathrm{H}, \mathrm{m}), 3.87(3 \mathrm{H}, \mathrm{s}), 3.72$ (1 $\mathrm{H}, \mathrm{s}), 3.12(1 \mathrm{H}, \mathrm{d}, J=19.2 \mathrm{~Hz}), 2.78(1 \mathrm{H}, \mathrm{brt}, J=19.8 \mathrm{~Hz}), 2.57$ ($1 \mathrm{H}, \operatorname{brd}, J=17.9 \mathrm{~Hz}$), $2.30-2.43(1 \mathrm{H}, \mathrm{m}), 2.02(1 \mathrm{H}, \mathrm{brd}, J=17.9$ $\mathrm{Hz}), 2.01(1 \mathrm{H}, \mathrm{d}, J=19.2 \mathrm{~Hz}), 1.22-1.76(6 \mathrm{H}, \mathrm{m})$. MS calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~m} / \mathrm{e} 364.1787$; found $m / e 346.1758$.
1-Carbomethoxy-3-decarbomethoxy-10-ox0-3-hydroxykopsininecarbinol (32). Osmium tetraoxide ($2.8 \mathrm{mg}, 0.011 \mathrm{mmol}$) in THF (0.5 mL)
was added to a stirred solution of $\mathbf{3 1}(40 \mathrm{mg}, 0.11 \mathrm{mmol})$ in tert-butyl alcohol/THF/water ($10: 8: 1,2.7 \mathrm{~mL}$) containing N-methylmorpholine N-oxide ($64 \mathrm{mg}, 0.546 \mathrm{mmol}$) at $25^{\circ} \mathrm{C}$. After the mixture was stirred for 10 h , saturated aqueous sodium hydrogen sulfide solution (1.5 mL) was added and the mixture stirred for 20 min and diluted with ethyl acetate (50 mL). The organic layer was washed with water and brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation under reduced pressure gave a white solid, which was purified by chromatography over silica gel (3.0 g), eluting with chloroform containing $1 \% \mathrm{MeOH}$ to give 32 ($40 \mathrm{mg}, 92 \%$). $\mathrm{Mp} 239-24{ }^{\circ} \mathrm{C}$ (from EtOAc/hexane). IR (CHCl_{3}) 3350 and 1680 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\delta 7.54(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.22(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz})$, $7.17(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.09(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 5.88(1 \mathrm{H}, \mathrm{s}), 4.28$ (1 H , dd, $J=12.4$ and 3.8 Hz), $3.96(3 \mathrm{H}, \mathrm{s}), 3.91(1 \mathrm{H}, \mathrm{s}), 3.67(1 \mathrm{H}$, s), $3.21(1 \mathrm{H}, \mathrm{d}, J=19.3 \mathrm{~Hz}), 2.78(1 \mathrm{H}, \mathrm{dt}, J=12.4$ and 3.8 Hz$)$, $2.50-2.60(1 \mathrm{H}, \mathrm{m}), 2.13(1 \mathrm{H}, \mathrm{d}, J=19.3 \mathrm{~Hz}), 1.97-2.27(3 \mathrm{H}, \mathrm{m})$, 1.18-1.82 (8 H, m). MS calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~m} / \mathrm{e} 398.1842$; found m / e 398.1836. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}: \mathrm{C}, 66.32 ; \mathrm{H}, 6.58 ; \mathrm{N}, 7.03$. Found: C, 66.21; H, 6.50; N, 6.96.
1-Carbomethoxy-10-oxo-3-hydroxykopsinine Carboxaldehyde (33). Dimethyl sulfoxide ($0.13 \mathrm{~mL}, 1.83 \mathrm{mmol}$) in dry dichloromethane (0.7 mL) was added dropwise to a stirred solution of oxalyl chloride (0.08 mL , 0.917 mmol) in dry dichloromethane (1 mL) at $-60^{\circ} \mathrm{C}$. After 10 min , a solution of $32(36 \mathrm{mg}, 0.09 \mathrm{mmol})$ in dry dichloromethane (1 mL) was added slowly, and the resulting mixture was kept at $-60^{\circ} \mathrm{C}$ for 15 min . Triethylamine ($0.7 \mathrm{~mL}, 5.02 \mathrm{mmol}$) was added to the above mixture, and after 5 min , water (1 mL) was added and the solution warmed to room temperature and diluted with ethyl acetate (50 mL). The solution was washed with aqueous potassium hydrogen sulfate solution, aqueous sodium hydrogen carbonate solution, and brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent under reduced pressure gave a white solid, which was purified by chromatography over silica gel (3 g), eluting with chloroform $/ 1 \%$ methanol to give 33 ($34 \mathrm{mg}, 95 \%$). Mp 245.5-247 ${ }^{\circ} \mathrm{C}$ (from MeOH). IR $\left(\mathrm{CHCl}_{3}\right) 3350,1730$, and $1675 \mathrm{~cm}^{-1} .^{1} \mathrm{H}$ NMR δ $9.64(1 \mathrm{H}, \mathrm{s}), 7.55(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 7.17$ $(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.09(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 6.61(1 \mathrm{H}, \mathrm{s}), 4.28(1$ H , dd, $J=12.4$ and 3.8 Hz), $3.97(3 \mathrm{H}, \mathrm{s}), 3.64(1 \mathrm{H}, \mathrm{d}, J=1 \mathrm{~Hz}), 3.06$ $(1 \mathrm{H}, \mathrm{d}, J=19.3 \mathrm{~Hz}), 2.78(1 \mathrm{H}, \mathrm{dt}, J=12.4$ and 3.8 Hz$), 2.90(1 \mathrm{H}$, d, $J=15.3 \mathrm{~Hz}), 2.00-2.26(2 \mathrm{H}, \mathrm{m}), 1.98(1 \mathrm{H}, \mathrm{d}, J=19.3 \mathrm{~Hz})$, 1.2-1.84 (7 H, m). MS calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~m} / \mathrm{e} 396.1685$; found m / e 396.1676. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5} ; \mathrm{C}, 66.65 ; \mathrm{H}, 6.10 ; \mathrm{N}, 7.07$. Found: C, 66.47; H, 5.91; N, 6.96.
10-Oxo-22-dihydrokopsine (34). A solution of 33 ($32 \mathrm{mg}, 80.8 \mu \mathrm{~mol}$) in dry THF (1.2 mL) was added dropwise to a stirred solution of lithium diisopropylamide ($0.828 \mu \mathrm{~mol}$) in dry THF (2.3 mL) at $-78^{\circ} \mathrm{C}$ under N_{2}, and the mixture was stirred for 1 h at $-78{ }^{\circ} \mathrm{C}$. The above mixture was quenched with 30% aqueous acetic acid $(1 \mathrm{~mL})$ at $-23^{\circ} \mathrm{C}$ and the solution extracted with ethyl acetate (20 mL). The extract was washed with aqueous sodium hydrogen carbonate solution and brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation gave a pale-yellow solid, which was purified by chromatography over silica gel (2 g), eluting with chloroform/2\% methanol to give 34 ($29 \mathrm{mg}, 91 \%$). Mp 236-238 ${ }^{\circ} \mathrm{C}$ (from EtOAc/ hexane). IR (CHCl_{3}) 3300 and $1675 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\delta 7.62(1 \mathrm{H}, \mathrm{d}$, $J=8.2 \mathrm{~Hz}), 7.17-7.27(2 \mathrm{H}, \mathrm{m}), 7.12(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 4.47(1 \mathrm{H}$, $\mathrm{t}, J=10.7 \mathrm{~Hz}), 4.12(1 \mathrm{H}, \mathrm{dd}, J=12.4$ and 3.8 Hz$), 3.96(3 \mathrm{H}, \mathrm{s}), 3.57$ ($1 \mathrm{H}, \mathrm{d}, J=1 \mathrm{~Hz}$), $3.17(1 \mathrm{H}, \mathrm{br}$ s), $2.85(1 \mathrm{H}, \mathrm{dt}, J=12.4$ and 3.8 Hz), $2.61(1 \mathrm{H}, \mathrm{d}, J=10.7 \mathrm{~Hz}), 2.52-2.78(2 \mathrm{H}, \mathrm{m}), 1.20-2.00(9 \mathrm{H}, \mathrm{m})$. MS calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~m} / e 396.1685$; found m / e 396.1687. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}: \mathrm{C}, 66.65 ; \mathrm{H}, 6.10 ; \mathrm{N}, 7.07$. Found: C, $66.62 ; \mathrm{H}, 6.06$; N, 6.95 .
22-Dihydrokopsine (35). BH_{3}. THF complex ($1.0 \mathrm{M}, 0.625 \mathrm{~mL}, 0.625$ mmol) was added dropwise to a stirred solution of 34 ($5 \mathrm{mg}, 12.5 \mu \mathrm{~mol}$) in dry THF (0.38 mL) at $25^{\circ} \mathrm{C}$ under N_{2}. After 40 min at $25^{\circ} \mathrm{C}$, the mixture was diluted with THF (2 mL)/5 $\mathrm{M} \mathrm{HCl}(1 \mathrm{~mL})$ and the solution warmed to $60^{\circ} \mathrm{C}$ for 30 min . After cooling, the mixture was diluted with ethyl acetate (30 mL) and the organic layer washed with aqueous sodium hydrogen carbonate solution and brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent gave a white solid, which was purified by chromatography over silica gel (1 g), eluting with chloroform/ 10% methanol to give 35 $(1.8 \mathrm{mg}, 37 \%)$ as a colorless amorphous powder. IR $\left(\mathrm{CHCl}_{3}\right) 3300$ and $1675 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\delta 7.55(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.32-7.47(1 \mathrm{H}, \mathrm{m})$, $7.18(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 7.08(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 4.22(1 \mathrm{H}, \mathrm{d}, J=$ $10 \mathrm{~Hz}), 3.94(3 \mathrm{H}, \mathrm{s}), 3.66(1 \mathrm{H}, \mathrm{d}, J=4.7 \mathrm{~Hz}), 3.48(1 \mathrm{H}, \mathrm{dd}, J=11.3$ and 4.7 Hz), $3.10(1 \mathrm{H}, \mathrm{s}), 3.92-3.08(2 \mathrm{H}, \mathrm{m}), 2.87(1 \mathrm{H}, \mathrm{dd}, J=16.7$ and 4 Hz$), 2.40-2.60(2 \mathrm{H}, \mathrm{m}), 1.10-2.20(10 \mathrm{H}, \mathrm{m})$. MS calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} m / e 382.1893$; found: $m / e 382.1898$.
(\pm)-Kopsine (1). The same procedure as for 32 was applied to 35 (1.8 $\mathrm{mg}, 1.8 \mu \mathrm{~mol})$ to give $\mathbf{1}(1.4 \mathrm{mg}, 78 \%)$ as colorless prisms. Mp 192-195 ${ }^{\circ} \mathrm{C}(\mathrm{dec})(\mathrm{MeOH})$. IR $\left(\mathrm{CHCl}_{3}\right) 3250,1755$, and $1675 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\delta 7.56(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.41(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.25(1 \mathrm{H}, \mathrm{t}, J$ $=8.2 \mathrm{~Hz}), 7.10(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 3.93(3 \mathrm{H}, \mathrm{s}), 3.51(1 \mathrm{H}, \mathrm{t}, J=$
$9.4 \mathrm{~Hz}), 3.33(1 \mathrm{H}, \mathrm{s}), 3.15(1 \mathrm{H}, \mathrm{dd}, J=9.4$ and 4.4 Hz$), 2.94-3.12$ ($2 \mathrm{H}, \mathrm{m}$), 3.33-2.67 (3 H, m), 1.70-1.92 (1 H, m), 1.10-1.72 ($8 \mathrm{H}, \mathrm{m}$). MS calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~m} / e 380.1736$; found $m / e 380.1737$. It was identical in all respects except rotation and melting point with a sample of (-)-kopsine, which was kindly supplied by Prof. Manfred Hesse (Zurich).

Treatment of the α-Chloro Acid 19 with AgOAc. A suspension of 19^{8} ($49 \mathrm{mg}, 0.09 \mathrm{mmol}$) and $\mathrm{AgOAc}(50 \mathrm{mg}, 0.3 \mathrm{mmol}$) in nitromethane (4 mL) was stirred at $25^{\circ} \mathrm{C}$ in the dark for 24 h . The mixture was partitioned between dichloromethane (10 mL)/water (10 mL), and the organic layer was separated and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The products were separated by PLC, eluting with $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3:1) to give 23 (9.1 mg , 19%) and 24 ($5 \mathrm{mg}, 10 \%$). The base-line material was treated with diazomethane in ether/THF ($3 \mathrm{~mL}, 1: 1$) to give two compounds, which were separated by PLC, eluting with $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:3) to give the cyclobutane derivative 22 ($11.4 \mathrm{mg}, 25 \%$) and the α, β-unsaturated ester 21 ($9.1 \mathrm{mg}, 20 \%$). 22 was recrystallized from $\mathrm{CHCl}_{3} /$ pentane to give colorless cubes, $\mathrm{mp} 250-252^{\circ} \mathrm{C}$ (dec) suitable for single-crystal X-ray structure determination. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2920,1730,1694,1599$, and 1150 $\mathrm{cm}^{-1} .^{1} \mathrm{H}$ NMR $\delta 8.10(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}), 6.82-7.16(4 \mathrm{H}, \mathrm{m}), 6.99(2$ $\mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}), 4.12-4.22(1 \mathrm{H}, \mathrm{m}), 3.86(3 \mathrm{H}, \mathrm{s}), 3.78(1 \mathrm{H}, \mathrm{s}), 3.75$ $(3 \mathrm{H}, \mathrm{s}), 3.55(1 \mathrm{H}, \mathrm{s}), 2.97(1 \mathrm{H}, \mathrm{dt}, J=13$ and 4 Hz$), 2.66-2.82$ (1 $\mathrm{H}, \mathrm{m}), 2.35(1 \mathrm{H}, \mathrm{d}, J=13.9 \mathrm{~Hz}), 2.17(1 \mathrm{H}, \mathrm{dd}, J=13.9$ and 3 Hz$)$, 1.83-2.02 ($1 \mathrm{H}, \mathrm{m}$), 1.1-1.8 ($6 \mathrm{H}, \mathrm{m}$). 23: IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3540,2940$, 1680 , and $1600 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\delta 7.9(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}), 7.1-7.2(2 \mathrm{H}$,
m), 6.94-7.02 (1 H, m), $6.92(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}), 4.33(1 \mathrm{H}, \mathrm{s}), 4.18-4.26$ $(1 \mathrm{H}, \mathrm{m}), 3.83(3 \mathrm{H}, \mathrm{s}), 3.59(1 \mathrm{H}, \mathrm{s}), 3.15(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz})$, 2.88-2.98 (1 H, m), 2.60-2.76 ($1 \mathrm{H}, \mathrm{m}$), $2.28(1 \mathrm{H}, \mathrm{m}), 1.85(1 \mathrm{H}, \mathrm{d}$, $J=17 \mathrm{~Hz}), 1.0-2.0(10 \mathrm{H}, \mathrm{m})$. MS calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S} m / e$ 480.1719; found m / e (EI) 480.1706. $24 \mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2940(\mathrm{~m}), 1750$ (m), $1680(\mathrm{~s})$, and $1594(\mathrm{~m}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $7.84(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz})$, $7.49(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.96-7.21(3 \mathrm{H}, \mathrm{m}), 6.86(2 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz})$, 4.10-4.20 (1 H, m), $3.83(3 \mathrm{H}, \mathrm{s}), 3.59-3.63(1 \mathrm{H}, \mathrm{m}), 3.55(1 \mathrm{H}, \mathrm{s})$, $3.22(1 \mathrm{H}, \mathrm{d}, J=17.8 \mathrm{~Hz}), 2.61-2.78(1 \mathrm{H}, \mathrm{m}), 1.98-2.12(2 \mathrm{H}, \mathrm{m}), 1.77$ ($3 \mathrm{H}, \mathrm{s}$), $1.67(3 \mathrm{H}, \mathrm{s}), 1.1-1.9(4 \mathrm{H}, \mathrm{m})$. MS (EI m/e 463 (67), 292 (98), 171 (100).

Acknowledgment. The National Institutes of Health (GM 32718) are gratefully thanked for their financial support. Drs. James Schultz and Rudolf Waditschatka are thanked for their contributions to earlier efforts in this research. Dr. John Huffman is thanked for the single-crystal X-ray crystallographic structure determination of 22.11 Professor Manfred Hesse is thanked for the authentic sample of (-)-kopsine (1).

Supplementary Material Available: Crystal data, fractional coordinates, isotropic thermal parameters, anisotropic thermal parameters, bond distances, and bond angles for 22 (10 pages). Ordering information is given on any current masthead page.

Solution Homolytic Bond Dissociation Energies of Organotransition-Metal Hydrides

Mats Tilset ${ }^{*, 1 \mathrm{l}}$ and Vernon D. Parker*,1b
Contribution from the Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo 3, Norway, and the Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300. Received August 4, 1988. Revised Manuscript Received April 8, 1989

Abstract

The homolytic bond dissocation energies (BDEs) of the mononuclear metal carbonyl hydride complexes (η^{5} $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{M}(\mathrm{CO})_{3} \mathrm{H}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}),\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{3} \mathrm{H},\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{W}(\mathrm{CO})_{2}(\mathrm{PMe} 3) \mathrm{H},\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{M}(\mathrm{CO})_{2} \mathrm{H}(\mathrm{M}=\mathrm{Fe}$, $\mathrm{Ru}), \mathrm{H}_{2} \mathrm{Fe}(\mathrm{CO})_{4}, \mathrm{Mn}(\mathrm{CO})_{4} \mathrm{PPh}_{3} \mathrm{H}, \mathrm{Mn}(\mathrm{CO})_{5} \mathrm{H}, \mathrm{Re}(\mathrm{CO})_{5} \mathrm{H}$, and $\mathrm{Co}(\mathrm{CO})_{3} \mathrm{LH}\left(\mathrm{L}=\mathrm{CO}, \mathrm{PPh}_{3}, \mathrm{P}(\mathrm{OPh})_{3}\right)$ have been estimated in acetonitrile solution by the use of a thermochemical cycle that requires knowledge of the metal hydride $\mathrm{p} K_{\mathrm{a}}$ and the oxidation potential of its conjugate base (anion). The BDE values obtained by this method fall in the range $50-67 \mathrm{kcal} / \mathrm{mol}$. In most cases, these results agree well with literature data. Our data provide strong support for the common assumption that the $\mathrm{M}-\mathrm{H}$ bond energies are greater for third-row and for second-row metals than for first-row metals, the difference being $5-11 \mathrm{kcal} / \mathrm{mol}$. Effects of neither phosphine or phosphite substitution nor permethylation of the cyclopentadienyl ring on the $\mathrm{M}-\mathrm{H}$ bond energies could be detected within the error limits of the method. The results are discussed in relation to previous M-H BDE estimates and metal hydride reactivity patterns.

Abstract

Organotransition-metal hydride ($\mathrm{M}-\mathrm{H}$) complexes constitute an important class of compounds and have received considerable attention particularly because of their involvement in many stoichiometric and catalytic processes. ${ }^{2}$ It is clear that the $\mathrm{M}-\mathrm{H}$ bond strengths exert a major influence on the properties of metal hydride compounds, and a detailed knowledge of the factors that determine the $\mathrm{M}-\mathrm{H}$ bond strengths would greatly aid in understanding reactivity patterns in many processes. ${ }^{3}$ For example, the activation of alkane carbon-hydrogen bonds by coordinatively unsaturated transition-metal complexes is a process that is being vigorously pursued. ${ }^{4}$ The formation of $\mathrm{M}-\mathrm{H}$ and $\mathrm{M}-\mathrm{C}$ bonds

[^4]Scheme I
energy change

$$
\begin{array}{ll}
\mathrm{L}_{n} \mathrm{M}-\mathrm{H} \rightarrow \mathrm{~L}_{n} \mathrm{M}^{\bullet}+\mathrm{H}^{\cdot} & \mathrm{BDE} \\
\mathrm{~L}_{n} \mathrm{M}-\mathrm{H} \rightarrow \mathrm{~L}_{n} \mathrm{M}^{-}+\mathrm{H}^{+} & \mathrm{BDE}-\mathrm{EA}\left(\mathrm{~L}_{n} \mathrm{M}^{\bullet}\right)+\mathrm{IP}\left(\mathrm{H}^{\bullet}\right) \\
\mathrm{L}_{n} \mathrm{M}-\mathrm{H} \rightarrow \mathrm{~L}_{n} \mathrm{M}^{+}+\mathrm{H}^{-} & \mathrm{BDE}+\mathrm{IP}\left(\mathrm{~L}_{n} \mathrm{M}^{\bullet}\right)-\mathrm{EA}\left(\mathrm{H}^{\bullet}\right) \tag{3}
\end{array}
$$

provides the driving force for such reactions, and the sum of the $\mathrm{M}-\mathrm{H}$ and $\mathrm{M}-\mathrm{C}$ bond dissociation energies must be on the order of $110 \mathrm{kcal} / \mathrm{mol}$ for the reaction to be thermodynamically feasible. ${ }^{5}$

Three modes of cleavage of $\mathrm{M}-\mathrm{H}$ bonds have been envisaged, as shown in Scheme I. ${ }^{2 a}$ The first reaction is a homolytic cleavage reaction for which the energy change is given by the homolytic bond dissociation energy (BDE) of the $\mathrm{M}-\mathrm{H}$ bond. In reaction

[^5]
[^0]: * Address correspondence to this author at the Department of Chemistry, The University of Texas at Austin, Austin, TX 78712.
 ${ }^{+}$Department of Chemistry.
 *Molecular Structure Center.

[^1]: (1) Greshoff, M. Ber. Dtsch. Chem. Ges. 1890, 23, 3537.
 (2) Kump, C.; Dugan, J. J.; Schmid, H. Helv. Chim. Acta 1966, 49, 1237. Govindachari, T. R.; Nagarajan, K.; Schmid, H. Ibid. 1963, 46, 433. Kump, C.; Schmid, H. Ibid. 1962, 45, 1090. Structure of kopsine: Govindachari, T. R.; Rai, B. R.; Rajappa, S.; Viswanathan, N.; Kump, W. G.; Nagarajan, K.; Schmid, H. Ibid. 1962, 45, 1146; 1963, 46, 572. For references to the isolation of kopsane alkaloids, see: Bhattacharya, A.; Chatterjee, A.; Rose, P. K. J. Am. Chem. Soc. 1949, 71, 3370. Bhattacharya, A. Ibid. 1953, 75 , 381. Crow, W. D.; Michael, M. Aust. J. Chem. 1955, 8, 129. Bisset, N. G.; Crow, W. D.; Greet, Y. Ibid. 1958, ll, 388. Crow, W. D.; Michael, M. Ibid. 1962, $15,130$.

[^2]: (6) Magnus, P.; Schultz, J.; Houk, K. N. Tetrahedron Lett. 1986, 27, 655.
 (7) The anion 15 undergoes slow decomposition at $0-20^{\circ} \mathrm{C}$ and as a consequence only reacts efficiently with unhindered allylic halides.
 (8) Magnus, P.; Matthews, I. R.; Schultz, J.; Waditschatka, R.; Huffman, J. C. J. Org. Chem. 1988, 53, 5772.

[^3]: (9) Grieco, P. A.; Gilman, S.; Nishizawa, M. J. Org. Chem. 1976, 41, 1485.
 (10) Van Rheenen, V.; Kelly, R. C.; Cha, D. Y. Tetrahedron Lett. 1976, 1973.

[^4]: (1) (a) University of Oslo. (b) Utah State University.
 (2) For recent reviews of metal hydride chemistry, see: (a) Pearson, R. G. Chem. Rev. 1985, 85, 41. (b) Moore, D. S.; Robinson, S. D. Chem. Soc. Rev. 1983, 12, 415. (c) Hlatky, G. G.; Crabtree, R. H. Coord. Chem. Rev. 1985, $65,1$.
 (3) Connor, J. A. Top. Curr. Chem. 1977, 71, 71.
 (4) For recent reviews, see: (a) Crabtree, R. H. Chem. Rev. 1985, 85, 245. (b) Halpern, J. Inorg. Chim. Acta 1985, 100, 41. (c) Shilov, A. E. Activation of Saturated Hydrocarbons by Transition Metal Complexes; D. Reidel: Dordrecht, 1984.

[^5]: (5) Nolan, S. P.; Hoff, C. D.; Stoutland, P. O.; Newman, L. J.; Buchanan, J. M.; Bergman, R. G.; Yang, G. K.; Peters, K. S. J. Am. Chem. Soc. 1987, 109, 3143.

